Abstract

Wearable electrocardiogram (ECG) equipment can realize continuous monitoring of cardiovascular diseases, but these devices are more susceptible to interference from various noises, which will seriously reduce the diagnostic correctness. In this work, a novel noise reduction model for ECG signals is proposed based on variational autoencoder and masked convolution. The variational Bayesian inference is conducted to capture the global features of the ECG signals by encouraging the approximate posterior of the latent variables to fit the prior distribution, and we use the skip connection and feature concatenation to realize the information interaction across the channels. To strengthen the connection of local features of the ECG signals, the masked convolution module is used to extract local feature information, which supplement the global features and the noise reduction performance of whole model can be greatly improved. Experiments are carried out on the MIT-BIH arrythmia database, and the results display that the performance metrics of signal-to-noise ratio (SNR) and root mean square error (RMSE) are significantly improved compared with other approaches while causing less signal distortion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.