Abstract

Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.

Highlights

  • Traveling waves of oscillatory neuronal activity have been observed at many spatial scales their functional role remains a matter of debate [1]

  • The arrangement of excitatory and inhibitory receptors within the dendritic receptor field constitutes a spatial filter of the incoming wave patterns

  • The proposed mechanism allows the neuron to discriminate waves based on wavelength and orientation, thereby providing a basis for neural decoding. We explore this concept in the context of the descending motor system where the pyramidal tract neurons of motor cortex monosynaptically innervate motor neurons in the spinal cord

Read more

Summary

Introduction

Traveling waves of oscillatory neuronal activity have been observed at many spatial scales their functional role remains a matter of debate [1]. We recently proposed that the morphological properties of waves in motor cortex may serve as a neural basis for encoding movement-related information [17]. In the present study we explore how spatially-organized receptors within the dendritic field allow neurons to act as spatial filters of those wave patterns to effectively decode the information contained within their wavelength, coherence and direction. We use numerical simulation to explore this proposal in the context of the human descending motor system where we model the response of the principle output neurons of the motor cortex to simulated waves in cortex (Figure 1). The dendritic receptor field is modeled as a spatial Gabor filter which selectively initiates actions potentials in the neuron whenever it detects a specific wave pattern. We show that dendritic fields in cortex may serve as biological Gabor filters of internally generated patterns of oscillatory activity. We show how the output neurons of motor cortex may use Gabor filtering to translate those oscillatory patterns into steady motor output in the spine

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.