Abstract

We describe the synthesis, characterization and photophysical properties of a fullerene derivative whose structure includes a Zn-porphyrin and a second generation liquid-crystalline (LC) dendrimer. The size of the fullerene and porphyrin units with respect to the size of the LC dendrimer prevents the formation of liquid-crystalline phases. However, this system gives interesting photoinduced electron transfer phenomena. Compound has been investigated by steady state and time resolved fluorescence as well as transient absorption spectroscopy in polar and apolar solvents. We demonstrate that the fluorescence of the porphyrin unit in is quenched compared to the Zn-tetraphenylporphyrin used as reference. Femto- and picosecond transient absorption permit to identify the formation of a radical ion pair while nanosecond experiments allowed the determination of the charge recombination lifetimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.