Abstract
Brain tumor detection typically involves classifying various tumor types. Traditional classifiers, based on the McCulloch‐Pitts model, have faced criticism due to their oversimplified structure and limited capabilities in detecting brain tumor images with complex features. In this study, we propose a multiclassification model inspired by dendritic architectures in neurons, which leverages synaptic and dendritic nonlinear information processing capabilities. Experimental results using brain tumor detection datasets demonstrate that our proposed model outperforms other state‐of‐the‐art models across all evaluation metrics. © 2024 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEJ Transactions on Electrical and Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.