Abstract

Populations face a suite of anthropogenic stressors acting simultaneously, which can combine additively or interact to have complex effects on population persistence. Yet we still know relatively little about the mechanisms underlying population-level responses to multifactorial combinations of stressors because multiple stressor impacts across organisms' life cycles have not been systematically considered in population models. Specifically, different anthropogenic stressors can have variable effects across an organism's life cycle, resulting in non-intuitive results for long-term population persistence. For example, synergistic or antagonistic interactions might exacerbate or alleviate the effects of stressors on population dynamics, and different life-history stages or vital rates might contribute unequally to long-term population growth rates. Demographic modelling provides a framework to incorporate individual vital rate responses to multiple stressors into estimates of population growth, which will allow us to make more informed predictions about population-level responses to novel combinations of anthropogenic change. Without integrating stressors' interactive effects across the entire life cycle on population persistence, we may over- or underestimate threats to biodiversity and risk missing conservation management actions that could reduce species' vulnerability to stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call