Abstract

Signal detection stability is very important for vector fiber-optic hydrophone and hydrophone array, because the instability of the demodulated signal directly leads to the target azimuth estimation error and the degradation of system performance. In this paper, a method to achieve high-stability signal demodulation for interferometric vector fiber-optic hydrophone is studied. A parameter estimation and demodulation parameter compensation method for phase generated carrier demodulation system is proposed based on elliptic curve parameter fitting algorithm. An elliptic curve is constructed using the second and third frequency of the reference interference signal. The ellipse curve fitting algorithm is introduced to estimate the distortion parameter of the modulation and demodulation system by fitting the value of each elliptic curve parameter. By compensating the PGC demodulation for the tested signal with the estimated parameters, the instability of demodulation system caused by PGC modulation depth variation and additional modulation intensity of the light source can be effectively reduced. The feasibility of the method is verified by simulation experiments and actual system experiments. High stability signal detection is realized using the proposed method, which can effectively improves the detection effect of the vector fiber-optic hydrophone array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.