Abstract
In order to study the pathogenesis of Parkinson's disease (PD), and explore therapeutic drug or approaches, the accurate animal model of PD with inexpensive, biocompatible and convenient administration was necessary. The aim of the present work was to investigate a delivery strategy for rotenone microspheres in an animal model of PD. The rotenone microspheres were prepared by solvent evaporation technique. The rotenone microspheres showed high entrapment efficiency (97.4±2.2%) with particle size about 100 μm. In vitro release of rotenone microspheres demonstrated different profiles from medium with different pH or concentration of isopropyl alcohol. The most consistent medium with in vivo rotenone levels in rat plasma was PBS (pH 5.8) with 20% isopropyl alcohol, and the cumulated release amount of rotenone over 30 days was 95.4% in it. The rotenone microspheres (90 mg/kg) produced typical PD symptoms in rats, for example, the cataleptic behavior test demonstrated a obviously prolonged descent latency compared with control animals after administration, and the tyrosine hydroxylase (TH) immunohistochemistry tests showed typical histological evidence of selective degeneration of the nigrostriatal dopaminergic system (striatum and substantia nigra) in rotenone microspheres-treated rats. In addition, this delivery system for rotenone model showed many noticeable advantages such as inexpensive, biocompatible and expedient administration by direct subcutaneous injection. This information suggested that rotenone microspheres as a delivery strategy for setting up an ideal animal model of PD was feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.