Abstract

The organometallic alkane complexes Re(Cp)(CO)(PF(3))(alkane) and Re(Cp)(CO)(2)(alkane) have been detected after the photolysis of Re(Cp)(CO)(2)(PF(3)) in alkane solvent. NMR and time-resolved IR experiments reveal that the species produced by the interaction of n-pentane with [Re(Cp)(CO)(PF(3))] are an equilibrium mixture of Re(Cp)(CO)(PF(3))(pentane) and Re(Cp)(CO)(PF(3))(pentyl)H. The interaction of cyclopentane with [Re(Cp)(CO)(PF(3))] most likely results in a similar equilibrium between cyclopentyl hydride and cyclopentane complexes. An increasing proportion of alkane complex is observed on going from n-pentane to cyclopentane to cyclohexane, where only a small amount, if any, of the cyclohexyl hydride form is present. In general, when [Re(Cp)(CO)(PF(3))] reacts with alkanes, the products display a higher degree of oxidative cleavage in comparison with [Re(Cp)(CO)(2)], which favors alkane complexation without activation. Species with the formula Re(Cp)(CO)(PF(3))(alkane) have higher thermal stability and lower reactivity toward CO than the analogous Re(Cp)(CO)(2)(alkane) complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.