Abstract

Data aggregation is a key functionality in wireless sensor networks (WSNs). This paper focuses on data aggregation scheduling problem to minimize the delay (or latency). We propose an efficient distributed algorithm that produces a collision-free schedule for data aggregation in WSNs. We theoretically prove that the delay of the aggregation schedule generated by our algorithm is at most 16R + Δ - 14 time slots. Here, R is the network radius and Δ is the maximum node degree in the communication graph of the original network. Our algorithm significantly improves the previously known best data aggregation algorithm with an upper bound of delay of 24D + 6Δ + 16 time slots, where D is the network diameter (note that D can be as large as 2R). We conduct extensive simulations to study the practical performances of our proposed data aggregation algorithm. Our simulation results corroborate our theoretical results and show that our algorithms perform better in practice. We prove that the overall lower bound of delay for data aggregation under any interference model is max{log n,R}, where n is the network size. We provide an example to show that the lower bound is (approximately) tight under the protocol interference model when rI = r, where rI is the interference range and r is the transmission range. We also derive the lower bound of delay under the protocol interference model when r <; rI <; 3r and rI ≥ 3r.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.