Abstract

The Black-Scholes model does not account non-Markovian property and volatility smile or skew although asset price might depend on the past movement of the asset price and real market data can find a non-flat structure of the implied volatility surface. So, in this paper, we formulate an underlying asset model by adding a delayed structure to the constant elasticity of variance (CEV) model that is one of renowned alternative models resolving the geometric issue. However, it is still one factor volatility model which usually does not capture full dynamics of the volatility showing discrepancy between its predicted price and market price for certain range of options. Based on this observation we combine a stochastic volatility factor with the delayed CEV structure and develop a delayed hybrid model of stochastic and local volatilities. Using both a martingale approach and a singular perturbation method, we demonstrate the delayed CEV correction effects on the European vanilla option price under this hybrid volatility model as a direct extension of our previous work [12].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.