Abstract
In this article, an eco-epidemiological model with strong Allee effect in prey population growth is presented by a system of delay differential equations. The time lag in terms of the delay parameter corresponds to the predator gestation period. We inspect elementary mathematical characteristic of the proposed model such as uniform persistence, stability and Hopf bifurcation at the interior equilibrium point of the system. We execute several numerical simulations to illustrate the proposed mathematical model and our analytical findings. We use basic tools of nonlinear dynamic analysis as first return maps, Poincare sections and Lyapunov exponents to identify chaotic behavior of the system. We observe that the system exhibits chaotic oscillation due to the increase of the delay parameter. Such chaotic behavior can be suppressed by the strength of Allee effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.