Abstract

In this paper, we consider a delayed predator-prey system with intraspecific competition among predator and a strong Allee effect in prey population growth. Using the delay as bifurcation parameter, we investigate the stability of coexisting equilibrium point and show that Hopf-bifurcation can occur when the discrete delay crosses some critical magnitude. The direction of the Hopf-bifurcating periodic solution and its stability are determined by applying the normal form method and the centre manifold theory. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using the global Hopf-bifurcation result of Wu ({Trans. Am. Math. Soc.} 350:4799–4838, 1998) for functional differential equations, we establish the global existence of periodic solutions. Numerical simulations are carried out to validate the analytical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.