Abstract

In this paper, the dynamical behavior of a virus dynamics model with general incidence rate and intracellular delay is studied. Lyapunov functionals are constructed and LaSalle invariance principle for delay differential equation is used to establish the global asymptotic stability of the disease-free equilibrium and the chronic infection equilibrium. The results obtained show that the global dynamics are completely determined by the value of a certain threshold parameter called the basic reproduction number $$R_0$$ and under some assumptions on the general incidence function. Our results extend the known results on delay virus dynamics considered in other papers and suggest useful methods to control virus infection. These results can be applied to a variety of possible incidence functions that could be used in virus dynamics model as well as epidemic models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.