Abstract

A delay/Doppler-mapping receiver system, developed specifically for global positioning system (GPS)-reflection remote sensing, is described, and example delay/Doppler waveforms are presented. The high-quality data obtained with this system provide a more accurate and detailed examination of ground-based and aircraft GPS-reflection phenomenology than has been available to date. As an example, systematic effects in the reflected signal delay waveform, due to nonideal behavior of the C/A-code auto-correlation function, are presented for the first time. Both a single-channel open-loop recording system and a recently developed 16-channel recorder are presented. The open-loop data from either recorder are postprocessed with a software GPS receiver that performs the following functions: signal detection; phase and delay tracking; delay, Doppler, and delay/Doppler waveform mapping; dual-frequency (L1 and L2) processing; C/A-code and Y-code waveform extraction; coherent integrations as short as 125 /spl mu/s; navigation message decoding; and precise observable time tagging. The software can perform these functions on all detectable satellite signals without dead time, and custom signal-processing features can easily be included into the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.