Abstract

The use of combination antiretroviral therapy has proven remarkably effective in controlling HIV disease progression and prolonging survival. However, the emergence of drug resistance can occur. It is necessary that we gain a greater understanding of the evolution of drug resistance. Here, we consider an HIV viral dynamical model with general form of target cell density, drug resistance and intracellular delay incorporating antiretroviral therapy. The model includes two strains: wild-type and drug-resistant. The basic reproductive ratio for each strain is obtained for the existence of steady states. Qualitative analysis of the model such as the well-posedness of the solutions and the equilibrium stability is provided. Global asymptotic stability of the disease-free and drug-resistant steady states is shown by constructing Lyapunov functions. Furthermore, sufficient conditions related to the properties of the target cell density are obtained for the local asymptotic stability of the positive steady state. Numerical simulations are conducted to study the impact of target cell density and intracellular delay focusing on the stability of the positive steady state. The occurrence of Hopf bifurcation of periodic solutions is shown to depend on the target cell density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.