Abstract
Let k be a field of characteristic zero. Let F=X+H be a polynomial map from kn to kn, where X is the identity map and H has only degree two terms and higher. We say that the Jacobian matrix JH of H is strongly nilpotent with index p if for all X(1),…,X(p)∈kn we haveJH(X(1))…JH(X(p))=0. Every F of this form is a polynomial automorphism, i.e. there is a second polynomial map F−1 such that F∘F−1=F−1∘F=X. We prove that the degree of the inverse F−1 satisfiesdeg(F−1)≤deg(F)p−1, improving in the strongly nilpotent case on the well known degree bound deg(F−1)≤deg(F)n−1 for general polynomial automorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.