Abstract

This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of chelating agents. Iron release, mass loss, and mechanical testing data demonstrate the ability of the PVA-IONP biomaterial to 'degrade' over time. This degradability has not yet been demonstrated for crosslinked PVA hydrogels. These results are relevant to the development of degradable multifunctional drug carriers, image contrast agents, or magnetic scaffold materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call