Abstract

Osteoporotic fractures are a very common bone disease that is difficult to completely cure. A large number of people worldwide suffer from pain caused by osteoporotic fractures every year, which can even cause disability and death. The compromised skeletal strength, lower density, trabecular microstructure, and bone-forming ability caused by osteoporotic fractures make them difficult to treat relative to normal fractures. An ideal scheme for osteoporotic fractures is to select internal fixation materials with matched mechanical and biological properties and carry anti-osteoporosis drugs on the plant to achieve bio-fixation and improve the condition of osteoporosis simultaneously. We designed a Mg-based MAO-MT-PLGA drug/ion delivery system (DDS) compatible with bone-like mechanical properties, degradation properties, and drug therapy. In this research, we evaluated the degradation behavior of Mg-based MAO-MT-PLGA DDS using immersion tests and electrochemical tests aided by SEM, EDS, XPS, XRD, and FT-IR. The DDS showed better corrosion resistance over Mg alloy and could release more Mg2+ due to the degradation of PLGA. According to cell viability and cell adhesion, the DDS showed better osteogenic characteristics over control group I (Mg alloy) and control group II (Mg-based MAO alloy), especially in the cells co-cultured with the leaching solution for 72 h, in which the DDS group increased to about 15% cell viability compared with group I (p < 0.05). The mRNA relative expressions, including ALP, collagen I, OCN, OPG, and Runx-2, as well as extracellular matrix calcium deposits of the DDS, are 1.5~2 times over control group I and control group II (p < 0.05), demonstrating a better ability to promote bone formation and inhibit bone resorption. After the DDS was implanted into the castrated rat model for one month, the trabeculae in the treatment group were significantly denser and stronger than those in the control group, with a difference of about 1.5 times in bone volume fraction, bone density, and the number of trabeculae, as well as the magnesium content in the bone tissue (p < 0.05). The above results demonstrated that the Mg-based MAO-MT-PLGA drug/ion delivery system is a potential treatment for osteoporotic fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.