Abstract

Surface-attached, degradable polymer hydrogels with potential antimicrobial activity are reported. They were obtained by ring-opening metathesis copolymerization (ROMP) of a monomer with potential bioactivity and a monomer that carries a benzophenone cross-linker and a hydrolyzable group. The hydrolyzable group was either an ester or an anhydride group. The copolymers thus obtained were spin-coated onto silicon wafers and UV-irradiated to induce C,H cross-linking of the benzophenone groups and obtain the target polymer networks. Immersion of these networks into aqueous media triggered network degradation. The degradation speed depended on the nature of the intended break points (ester or anhydride groups), the number of cross-links per polymer chain, and the surrounding medium. By releasing bioactive polymer fragments to the medium ("leaching") and by regenerating the hydrogel surface during the degradation process, the hydrogels potentially have two ways to prevent biofilm formation on their surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.