Abstract

BackgroundThe potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion. However, this has yet to be investigated using a rapid PCR-based approach. In light of this, here we aim to determine if degenerate PCR primers can detect aminoglycoside and β-lactam resistance genes in the gut microbiota of healthy adults, without the need for an initial culture-based screen for resistant isolates. In doing so, we would determine if the gut microbiota of healthy adults, lacking recent antibiotic exposure, is a reservoir for resistance genes.ResultsThe strategy employed resulted in the identification of numerous aminoglycoside (acetylation, adenylation and phosphorylation) and β-lactam (including blaOXA, blaTEM, blaSHV and blaCTX-M) resistance gene homologues. On the basis of homology, it would appear that these genes originated from different bacterial taxa, with members of the Enterobacteriaceae being a particularly rich source. The results demonstrate that, even in the absence of recent antibiotic exposure, the human gut microbiota is a considerable reservoir for antibiotic resistance genes.ConclusionsThis study has demonstrated that the gut can be a significant source of aminoglycoside and β-lactam resistance genes, even in the absence of recent antibiotic exposure. The results also demonstrate that PCR-based approaches can be successfully applied to detect antibiotic resistance genes in the human gut microbiota, without the need to isolate resistant strains. This approach could also be used to rapidly screen other complex environments for target genes.

Highlights

  • The potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion

  • It is apparent that repositories of antibiotic resistance genes exist such that, following the development and application of new antibiotics, bacteria possessing or acquiring such genes will gain a selective advantage and resistance will increase over time [16,17]

  • A PCR-based approach highlights the presence of β-lactamase gene homologues in the gut microbiota The results of the β-lactamase-specific PCRs demonstrated the presence and diversity of class 2 β-lactamase genes in the gut microbiota of healthy adults (Table 2 [32])

Read more

Summary

Introduction

The potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion This has yet to be investigated using a rapid PCR-based approach. Until now, PCR-based strategies to detect antibiotic resistance genes in the gut microbiota have involved an initial culture-based screen for resistant isolates, followed by subsequent PCR-based approaches to identify the associated resistance genes. This does not take into consideration the fact that the vast majority of gut microbes are not cultured [21], and antibiotic resistance genes from such microorganisms would typically be overlooked

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call