Abstract
This paper addresses the problem of locating two straight and parallel road edges in images that are acquired from a stationary millimeter-wave radar platform positioned near ground-level. A fast, robust, and completely data-driven Bayesian solution to this problem is developed, and it has applications in automotive vision enhancement. The method employed in this paper makes use of a deformable template model of the expected road edges, a two-parameter log-normal model of the ground-level millimeter-wave (GLEM) radar imaging process, a maximum a posteriori (MAP) formulation of the straight edge detection problem, and a Monte Carlo algorithm to maximize the posterior density. Experimental results are presented by applying the method on GLEM radar images of actual roads. The performance of the method is assessed against ground truth for a variety of road scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.