Abstract
We propose a duality scheme for solving constrained nonsmooth and nonconvex optimization problems. Our approach is to use a new variant of the deflected subgradient method for solving the dual problem. Our augmented Lagrangian function induces a primal–dual method with strong duality, that is, with zero duality gap. We prove that our method converges to a dual solution if and only if a dual solution exists. We also prove that all accumulation points of an auxiliary primal sequence are primal solutions. Our results apply, in particular, to classical penalty methods, since the penalty functions associated with these methods can be recovered as a special case of our augmented Lagrangians. Besides the classical augmenting terms given by the l 1- or l 2-norm forms, terms of many other forms can be used in our Lagrangian function. Using a practical selection of the step-size parameters, as well as various choices of the augmenting term, we demonstrate the method on test problems. Our numerical experiments indicate that it is more favourable to use an augmenting term of an exponential form rather than the classical l 1- or l 2-norm forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.