Abstract
Efficient in vitro capacitation of stallion sperm has not yet been achieved, as suggested by low sperm penetration rates reported in in vitro fertilization (IVF) studies. Our objectives were to evaluate defined incubation conditions that would support changes consistent with capacitation in stallion sperm. Protein tyrosine phosphorylation events and the ability of sperm to undergo acrosomal exocytosis under various incubation conditions were used as end points for capacitation. Sperm incubated 4-6h in modified Whitten's (MW) with the addition of 25 mM NaHCO3 and 7 mg/mL BSA (capacitating medium) yielded high rates of protein tyrosine phosphorylation. Either HCO3(-) or BSA was required to support these changes, with the combination of both providing the most intense results. When a membrane-permeable form of cAMP and a phosphodiesterase inhibitor (IBMX) were added to MW in the absence of HCO3(-) and BSA, the tyrosine phosphorylation results obtained in our capacitating conditions could not be replicated, suggesting either effects apart from cAMP were responsible for tyrosine phosphorylation, or that stallion sperm might respond differently to these reagents as compared to sperm from other mammals. Sperm incubation in capacitating conditions was also associated with high percentages (P<or=0.001) of acrosomal exocytosis upon exposure to progesterone (44.6%) or calcium ionophore (51.6%), as compared to sperm incubated in medium devoid of BSA and NaHCO3. Our results were novel in that we report protein tyrosine phosphorylation in stallion sperm incubated in defined conditions, coupled with significant percentages of acrosome reacted sperm. The continuation of these studies might help to elucidate the conditions and pathways supporting sperm capacitation in the horse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.