Abstract

Heterochromatin is a specialized chromatin structure in chromosomal regions associated with repeated DNA sequences and low concentrations of genes. Formation of heterochromatin is determined in large part by enzymes that modify histones and structural proteins that bind to these modified histones in a cooperative fashion. In Drosophila, mutations in genes that encode heterochromatic proteins are often dominant and increase expression of genes placed into heterochromatic positions. To find components of telomeric heterochromatin in Drosophila, we screened a collection of autosomal deficiencies for dominant suppressors of silencing of a transgene at the telomere of chromosome 2L. While many deficiency chromosomes are associated with dominant suppressors, in the cases tested on chromosome 2 the suppressor mapped to the 2L telomere, rather than the deficiency. We infer that background effects may hamper the search for genes that play a role in telomeric heterochromatin formation and that either very few genes participate in this pathway or mutations in these genes are not dominant suppressors of telomeric position effect. The data also suggest that the 2L telomere region plays a major role in telomeric silencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call