Abstract

Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear. Based on transcriptomes assembled from Ectropis obliqua-fed leaves, a cDNA encoding BAHD acyltransferase, namely CsCHAT1, was highly induced in leaves fed with E. obliqua. Enzymatic assays showed that CsCHAT1 converted (Z)-3-hexenol into 3-HAC. Further suppression of CsCHAT1 expression reduced the accumulation of 3-HAC and lowered the resistance of tea plants to E. obliqua, while 3-HAC replenishment rescued the reduced resistance of CsCHAT1-silenced tea plants against E. obliqua. Two transcription factors (TFs), CsNAC30 and CsTCP11, were co-expressed with CsCHAT1. An integrative approach of biochemistry, DNA-protein interaction, gene silencing, and metabolic profiling revealed that the two TFs positively regulated the expression of CsCHAT1. The suppression of either one decreased the production of 3-HAC and eliminated the resistance of tea plants to E. obliqua. Notably, the suppression of either one considerably impaired JA-induced 3-HAC biosynthesis in tea plant. The proposed pathway can be targeted for innovative agro-biotechnologies protecting tea plants from damage by E. obliqua.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.