Abstract

This work presents a quad-port Multiple Input Multiple Output (MIMO) wideband antenna that operates in the terahertz (THz) frequency range is designed and analyzed. To improve MIMO performance, a defective ground structure (DGS) is used. A rectangular metallic patch was altered by adding parasitic elements to the radiator with the lowered ground plane on a polyamide substrate in order to achieve the wideband THz operating frequency. The THz antenna was turned into a MIMO antenna by replicating horizontally and vertically with a spacing of 0.05 λ and 0.002 λ, respectively (λ calculated at 1.7 THz). The designed THz MIMO antenna, comprising 40 μm × 46 μm × 2 μm, operates across the 1.7–10.4 THz frequency region. The THz MIMO antenna provides isolation of more than 20 dB in the frequency range of 2.8–10.4 THz and more than 10 dB for the frequency of 1.7–2.7 THz. Isolation augmentation is accomplished by establishing different local current channels using the antenna's DGS. The MIMO diversity properties of the proposed THz MIMO antenna are analyzed and found to be ECC<0.004, DG ~ 10 dB, TARC < −10 dB, MEG < −3 dB, and CCL<0.23 bps/Hz over the antenna's operating frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.