Abstract

Atherosclerosis is a dynamic process. Dyslipidemia, diabetes mellitus, hypertension, obesity, and shear stress of blood flow, the risk factors for the development of atherosclerosis, are characterized by abnormalities in the metabolism of essential fatty acids (EFAs). Gene expression profiling studies revealed that at the sites of atheroslcerosis-prone regions, endothelial cells showed upregulation of pro-inflammatory genes as well as antioxidant genes, and endothelial cells themselves showed changes in cell shape and proliferation. Uncoupled respiration (UCP-1) precedes atherosclerosis at lesion-prone sites but not at the sites that are resistant to atherosclerosis. UCP-1 expression in aortic smooth muscle cells causes hypertension, enhanced superoxide anion production and decreased the availability of NO, suggesting that inefficient metabolism in blood vessels causes atherosclerosis without affecting cholesterol levels. Thus, mitochondrial dysfunction triggers atherosclerosis. Atherosclerosis-free aortae have abundant concentrations of the EFA-linoleate, whereas fatty streaks (an early stage of atherosclerosis) are deficient in EFAs. EFA deficiency promotes respiratory uncoupling and atherosclerosis. I propose that a defect in the activity of Δ 6 and Δ 5 desaturases decreases the formation of γ-linolenic acid (GLA), dihomo-DGLA (DGLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) from dietary linoleic acid (LA) and α-linolenic acid (ALA). This, in turn, leads to inadequate formation of prostaglandin E 1 (PGE 1), prostacyclin (PGI 2), PGI 3, lipoxins (LXs), resolvins, neuroprotectin D1 (NPD1), NO, and nitrolipids that have anti-inflammatory and platelet anti-aggregatory actions, inhibit leukocyte activation and augment wound healing and resolve inflammation and thus, lead to the initiation and progression atheroslcerosis. In view of this, it is suggested that Δ 6 and Δ 5 desaturases could serve as biological target(s) for the discovery and development of pharmaceuticals to treat atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call