Abstract

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphorcholine (POPC) are important components in pulmonary surfactants (PSs), of which the relative content is related to lung compliance. Herein, the phase behavior and thermodynamic structure of mixed DPPC/POPC monolayers were studied to elucidate the intermolecular interaction between DPPC and POPC molecules. Surface pressure-molecular area isotherms demonstrated that POPC significantly affected the phase behavior of the lipid domain structure as a function of its concentration. The compression modulus of the mixed monolayers reduced with the increase in POPC proportion, which can be attributed to the intermolecular repulsion between DPPC and POPC. Brewster angle microscopy analysis showed that the ordered structure of the monolayers trended toward fluidization in the presence of POPC. Raman spectroscopy results revealed that the change in C-C skeleton stretching vibration was the main cause of the decrease in the monolayer packing density. These findings provide new insights into the role of different phospholipid components in the function of PS film at a molecular level, which can help us to understand the synergy effects of the proportional relationship between DPPC and POPC on the formation and progression of lung disease and provide some references for the synthesis of lung surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call