Abstract

AbstractA deeper analysis of possible errors and inconsistencies in the analysis of vortex asymmetries owing to the placement of centers of tropical cyclones (TCs) in mesoscale models is presented. Previous works have established that components of the 2D and 3D structure of these TCs—primarily radial wind and vertical tilt—can vary greatly depending on how the center of a model TC is defined. This work will seek to expand the previous research on this topic, but only for the 2D structure. To be specific, this work will present how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices. It is shown that the errors associated with aliasing the mean are sensitive primarily to the difference between the peak of vorticity inside the radius of maximum winds and the average vorticity inside the core. Tangential wind and vorticity aliasing occur primarily in the core; radial wind aliasing spans the whole of the vortex. It is also shown that, when adding low-wavenumber asymmetries, the aliasing is dependent on the placement of the center relative to the location of the asymmetries on the vortex. It is also shown that the primary concern for 2D analysis when calculating the center of a TC is correctly resolving azimuthal wavenumber 0 tangential wind, because errors here will alias onto all higher wavenumbers, the specific structures of which are dependent on the structure of the mean vortex itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.