Abstract
Survival analyses of populations and the establishment of prognoses for individual patients are important activities in the practice of medicine. Standard survival models, such as the Cox proportional hazards model, require extensive feature engineering or prior knowledge to model at an individual level. Some survival analysis models can avoid these problems by using machine learning extended the CPH model, and higher performance has been reported. In this paper, we propose an innovative loss function that is defined as the sum of an extended mean squared error loss and a pairwise ranking loss based on ranking information on survival data. We apply this loss function to optimize a deep feed-forward neural network (RankDeepSurv), which can be used to model survival data. We demonstrate that the performance of our model, RankDeepSurv, is superior to that of other state-of-the-art survival models based on an analysis of 4 public medical clinical datasets. When modelling the prognosis of nasopharyngeal carcinoma (NPC), RankDeepSurv achieved better prognostic accuracy than the CPH established by clinical experts. The difference between high and low risk groups in the RankDeepSurv model is greater than the difference in the CPH. The results show that our method has considerable potential to model survival data in medical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.