Abstract

This article demonstrates the potential of deep-subthreshold mixed-signal circuits in delivering medium-to-high performance to supply-constrained, energy-harvesting Internet of Things (IoT) sensing applications. This effort encapsulates the design and implementation of an ultra-low-voltage (ULV) 0.2-V open-loop VCO-based analog-to-digital converter (ADC). A replica VCO facilitates variation-aware VCO analog linearization. Analog phase-domain signal processing (APSP) techniques for beat-frequency extraction, phase-interpolation, and phase-folding relax constraints on both voltage-to-frequency analog circuitry and frequency-to-digital synchronous digital hardware. High-speed multi-phase frequency-to-digital converters (FDCs) and multi-rate digital back-end enable a sampling speed of 35 MS/s. The ADC prototype is implemented in 28-nm CMOS and achieves a peak SNDR of 64.4/59.9 dB, equivalent to an ENOB of 10.4/9.7 over 80-/160-kHz bandwidth (BW). The ADC core occupies an active area of 0.12 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and consumes 15.9 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text {W}$ </tex-math></inline-formula> , resulting in a Walden and Schreier FoM of, respectively, 73.3/61.5 fJ/c-s and 161.4/159.9 dB at the corresponding BW configurations. Measurements across multiple ICs and supply voltages consolidate the value of variation-aware deep-subthreshold open-loop ADCs.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.