Abstract

Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic task for researchers. For this, machine learning and deep convolutional neural network (CNN) based approaches are readily available to solve various problems related to brain image data analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate classification of dementia stages, we need highly discriminative features obtained from MRI images. Recently advanced deep CNN-based models successfully proved their accuracy. However, due to a smaller number of image samples available in the datasets, there exist problems of over-fitting hindering the performance of deep learning approaches. In this research, we developed a Siamese convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using augmentation approaches. Experiments are performed on a publicly available dataset open access series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of 99.05% is achieved for the classification of dementia stages. We compared our model with the state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art models in terms of performance, efficiency, and accuracy.

Highlights

  • Alzheimer’s disease (AD or Alzheimer’s) causes the loss of tissues and death of nerve cells throughout the brain, resulting in memory loss of humans and imposing a bad impact on the performance of routine life tasks such as writing, speaking, and reading

  • convolutional neural network (CNN) based approach with an extra convolutional layer, which is inspired by VGG16 architecture, was used to classify Alzheimer’s disease

  • In the four-way classification of no dementia (ND), very mild dementia (VMD), mild dementia (MD), and moderate AD (MAD) from the OASIS dataset, and overall accuracy obtained is 99.05%

Read more

Summary

Introduction

Alzheimer’s disease (AD or Alzheimer’s) causes the loss of tissues and death of nerve cells throughout the brain, resulting in memory loss of humans and imposing a bad impact on the performance of routine life tasks such as writing, speaking, and reading. Mild cognitive stage patients behave very aggressively, but patients in the last stage of AD suffer from heart failure and respiratory system dysfunctionality leading to death [1]. The early-stage diagnosis of Alzheimer’s and treatment can improve the patient’s life [3]. Every year a large number of people suffer from this disease. The global deterioration scale (GDS) is commonly used for dementia scaling. This scale further divides AD into seven stages, which depend on the

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call