Abstract

Car following (CF) models are an appealing research area because they fundamentally describe longitudinal interactions of vehicles on the road, and contribute significantly to an understanding of traffic flow. There is an emerging trend to use data-driven method to build CF models. One challenge to the data-driven CF models is their capability to achieve optimal longitudinal driven behavior because a lot of bad driving behaviors will be learnt from human drivers by the supervised learning manner. In this study, by utilizing the deep reinforcement learning (DRL) techniques trust region policy optimization (TRPO), a DRL based CF model for electric vehicle (EV) is built. The proposed CF model can learn optimal driving behavior by itself in simulation. The experiments on following standard driving cycle show that the DRL model outperforms the traditional CF model in terms of electricity consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.