Abstract

Deep learning (DL) has certainly improved industrial inspection, while significant progress has also been achieved in metrology with impressive results reached through their combination. However, it is not easy to deploy metrology sensors in a factory, as they are expensive, and require special acquisition conditions. In this article, we propose a methodology to replace a high-end sensor with a low-cost one introducing a data-driven soft sensor (SS) model. Concretely, a residual architecture (R <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{2}$</tex-math></inline-formula> esNet) is proposed for quality inspection, along with an error-correction scheme to lessen noise impact. Our method is validated in printed circuit board (PCB) manufacturing, through the identification of defects related to glue dispensing before the attachment of silicon dies. Finally, a detection system is developed to localize PCB regions of interest, thus offering flexibility during data acquisition. Our methodology is evaluated under operational conditions achieving promising results, whereas PCB inspection takes a fraction of the time needed by other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call