Abstract
The electromagnetic environment is increasingly complex and changeable, and radar needs to meet the execution requirements of various tasks. Modern radars should improve their intelligence level and have the ability to learn independently in dynamic countermeasures. It can make the radar countermeasure strategy change from the traditional fixed anti-interference strategy to dynamically and independently implementing an efficient anti-interference strategy. Aiming at the performance optimization of target tracking in the scene where multiple signals coexist, we propose a countermeasure method of cognitive radar based on a deep Q-learning network. In this paper, we analyze the tracking performance of this method and the Markov Decision Process under the triangular frequency sweeping interference, respectively. The simulation results show that reinforcement learning has substantial autonomy and adaptability for solving such problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.