Abstract

Automated electrocardiogram classification techniques play an important role in assisting physicians in diagnosing arrhythmia. Among these, the automatic classification of single-lead heartbeats has received wider attention due to the urgent need for portable ECG monitoring devices. Although many heartbeat classification studies performed well in intrapatient assessment, they do not perform as well in interpatient assessment. In particular, for supraventricular ectopic heartbeats (S), most models do not classify them well. To solve these challenges, this article provides an automated arrhythmia classification algorithm. There are three key components of the algorithm. First, a new heartbeat segmentation method is used, which improves the algorithm's capacity to classify S substantially. Second, to overcome the problems created by data imbalance, a combination of traditional sampling and focal loss is applied. Finally, using the interpatient evaluation paradigm, a deep convolutional neural network ensemble classifier is built to perform classification validation. The experimental results show that the overall accuracy of the method is 91.89%, the sensitivity is 85.37%, the positive productivity is 59.51%, and the specificity is 93.15%. In particular, for the supraventricular ectopic heartbeat(s), the method achieved a sensitivity of 80.23%, a positivity of 49.40%, and a specificity of 96.85%, exceeding most existing studies. Even without any manually extracted features or heartbeat preprocessing, the technique achieved high classification performance in the interpatient assessment paradigm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.