Abstract
Gamma Knife radiosurgery (GKS) is a promising treatment option for meningioma. However, the incidence of peritumoral edema (PTE) following GKS has been reported to be 7%-38%. This study aimed to develop a predictive model for post-GKS PTE using a deep neural network (DNN) algorithm. Patients treated with GKS for meningioma between November 2012 and February 2020 at a single tertiary center were reviewed. The primary outcome was newly developed or aggravated PTE after GKS. Clinical data, including radiosurgical parameters, were collected, and imaging data obtained at the time of GKS were incorporated into the model using a 50-layered residual neural network, ResNet50. Consequently, the model efficiency was evaluated considering the accuracy and area under the receiver operating curve (AUC) values. A total of 202 patients were included in this study. The median tumor volume was 2.3 mL, and the median prescription dose was 13 Gy. PTE was observed before GKS in 22 patients. Post-GKS PTE was evident in 28 patients (13.9%), which further evolved to radiation necrosis in 5 patients. The accuracy and AUC values of the hybrid data model based on both clinical and imaging data were 0.725 and 0.701, respectively. The performance of the hybrid data model was superior to that of the other models based on clinical or image data only. The DNN-based model using both clinical and imaging data exhibited fair results in predicting post-GKS PTE in meningioma treatment. Predictive models using imaging data may be helpful in prognostic research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.