Abstract

Air pollution is one of the most serious threats to human health and is an issue causing growing public concern. Air quality forecasts play a fundamental role in providing decision-making support for environmental governance and emergency management, and there is an imperative need for more accurate forecasts. In this paper, we propose a novel spatial–temporal deep multitask learning (ST-DMTL) framework for air quality forecasting based on dynamic spatial panels of multiple data sources. Specifically, we develop a prediction model by combining multitask learning techniques with recurrent neural network (RNN) models and perform empirical analyses to evaluate the utility of each facet of the proposed framework based on a real-world dataset that contains 451,509 air quality records that were generated on an hourly basis from January 2013 to September 2017 in China. An application check is also conducted to verify the practical value of our proposed ST-DMTL framework. Our empirical results indicate the efficacy of the framework as a viable approach for air quality forecasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.