Abstract

We propose a deep multi-stream model for left ventricular ejection fraction (LVEF) prediction in 2D echocardiographic (2DE) examinations. We use four standard 2DE views as model input, which are automatically selected from the full 2DE examination. The LVEF prediction model processes eight streams of data (images + optical flow) and consists of convolutional neural networks terminated with transformer layers. The model is made robust to missing, misclassified and duplicate views via pre-training, sampling strategies and parameter sharing. The model is trained and evaluated on an existing clinical dataset (12,648 unique examinations) with varying properties in terms of quality, examining physician, and ultrasound system. We report R2=0.84\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R^2 = 0.84$$\\end{document} and mean absolute error = 4.0% points for the test set. When evaluated on two public benchmarks, the model performs on par or better than all previous attempts on fully automatic LVEF prediction. Code and trained models are available on a public project repository.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.