Abstract

Plant vascular bundles are responsible for water and material transportation, and their quantitative and functional evaluation is desirable in plant research. At the single-plant level, the number, size, and distribution of vascular bundles vary widely, posing a challenge to automatically and accurately identifying and quantifying them. In this study, a deep learning-integrated phenotyping pipeline was developed to robustly and accurately detect vascular bundles in Computed Tomography (CT) images of stem internodes. Two semantic indicators were used to evaluate and identify a suitable feature extraction network for semantic segmentation models. The epidermis thickness of maize stem was evaluated for the first time and adjacent vascular bundles were improved using an adaptive watershed-based approach. The counting accuracy (R2) of vascular bundles was 0.997 for all types of stem internodes, and the measured accuracy of size traits was over 0.98. Combining sap flow experiments, multiscale traits of vascular bundles were evaluated at the single-plant level, which provided an insight into the water use efficiency of the maize plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.