Abstract

The increasing prevalence of myopia worldwide presents a significant public health challenge. A key strategy to combat myopia is with early detection and prediction in children as such examination allows for effective intervention using readily accessible imaging technique. To this end, we introduced DeepMyopia, an artificial intelligence (AI)-enabled decision support system to detect and predict myopia onset and facilitate targeted interventions for children at risk using routine retinal fundus images. Based on deep learning architecture, DeepMyopia had been trained and internally validated on a large cohort of retinal fundus images (n = 1,638,315) and then externally tested on datasets from seven sites in China (n = 22,060). Our results demonstrated robustness of DeepMyopia, with AUCs of 0.908, 0.813, and 0.810 for 1-, 2-, and 3-year myopia onset prediction with the internal test set, and AUCs of 0.796, 0.808, and 0.767 with the external test set. DeepMyopia also effectively stratified children into low- and high-risk groups (p < 0.001) in both test sets. In an emulated randomized controlled trial (eRCT) on the Shanghai outdoor cohort (n = 3303) where DeepMyopia showed effectiveness in myopia prevention compared to NonCyc-based model, with an adjusted relative reduction (ARR) of −17.8%, 95% CI: −29.4%, −6.4%. DeepMyopia-assisted interventions attained quality-adjusted life years (QALYs) of 0.75 (95% CI: 0.53, 1.04) per person and avoided blindness years of 13.54 (95% CI: 9.57, 18.83) per 1 million persons compared to natural lifestyle with no active intervention. Our findings demonstrated DeepMyopia as a reliable and efficient AI-based decision support system for intervention guidance for children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.