Abstract

Lattice degeneration and/or retinal breaks, defined as notable peripheral retinal lesions (NPRLs), are prone to evolving into rhegmatogenous retinal detachment which can cause severe visual loss. However, screening NPRLs is time-consuming and labor-intensive. Therefore, we aimed to develop and evaluate a deep learning (DL) system for automated identifying NPRLs based on ultra-widefield fundus (UWF) images. A total of 5,606 UWF images from 2,566 participants were used to train and verify a DL system. All images were classified by 3 experienced ophthalmologists. The reference standard was determined when an agreement was achieved among all 3 ophthalmologists, or adjudicated by another retinal specialist if disagreements existed. An independent test set of 750 images was applied to verify the performance of 12 DL models trained using 4 different DL algorithms (InceptionResNetV2, InceptionV3, ResNet50, and VGG16) with 3 preprocessing techniques (original, augmented, and histogram-equalized images). Heatmaps were generated to visualize the process of the best DL system in the identification of NPRLs. In the test set, the best DL system for identifying NPRLs achieved an area under the curve (AUC) of 0.999 with a sensitivity and specificity of 98.7% and 99.2%, respectively. The best preprocessing method in each algorithm was the application of original image augmentation (average AUC =0.996). The best algorithm in each preprocessing method was InceptionResNetV2 (average AUC =0.996). In the test set, 150 of 154 true-positive cases (97.4%) displayed heatmap visualization in the NPRL regions. A DL system has high accuracy in identifying NPRLs based on UWF images. This system may help to prevent the development of rhegmatogenous retinal detachment by early detection of NPRLs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.