Abstract

The mental workload (MWL) classification is a critical problem for quantitative assessment and analysis of operator functional state in many safety-critical situations with indispensable human–machine cooperation. The MWL can be measured by psychophysiological signals. In this work, we propose a novel restricted Boltzmann machine (RBM) architecture for MWL classification. In relation to this architecture, we examine two main issues: the optimal structure of RBM and selection of the most important EEG channels (electrodes) for MWL classification. The trial-and-error and entropy-based pruning methods are compared for the RBM structure identification. The degree of importance of EEG channels is calculated from the weights in a well-trained network in order to select the most relevant channels for classification task. Extensive comparative results showed that the selected EEG channels lead to accurate MWL classification across subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call