Abstract

Background and purposeRisk prediction of overall survival (OS) is crucial for gastric cancer (GC) patients to assess the treatment programs and may guide personalized medicine. A novel deep learning (DL) model was proposed to predict the risk for OS based on computed tomography (CT) images. Materials and methodsWe retrospectively collected 640 patients from three independent centers, which were divided into a training cohort (center 1 and center 2, n = 518) and an external validation cohort (center 3, n = 122). We developed a DL model based on the architecture of residual convolutional neural network. We augmented the size of training dataset by image transformations to avoid overfitting. We also developed radiomics and clinical models for comparison. The performance of the three models were comprehensively assessed. ResultsTotally 518 patients were prepared by data augmentation and fed into DL model. The trained DL model significantly classified patients into high-risk and low-risk groups in training cohort (P-value <0.001, concordance index (C-index): 0.82, hazard ratio (HR): 9.79) and external validation cohort (P-value <0.001, C-index: 0.78, HR: 11.76). Radiomics model was developed with selected 24 features and clinical model was developed with three significant clinical variables (P-value <0.05). The comparison illustrated DL model had the best performance for risk prediction of OS according to the C-index (training: DL vs Clinical vs Radiomics = 0.82 vs 0.73 vs 0.66; external validation: 0.78 vs 0.71 vs 0.72). ConclusionThe DL model is a powerful model for risk assessment, and potentially serves as an individualized recommender for decision-making in GC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.