Abstract
Abstract The optical flow technique has advantages in motion tracking and has long been employed in precipitation nowcasting to track the motion of precipitation fields using ground radar datasets. However, the performance and forecast time scale of models based on optical flow are limited. Here, we present the results of the application of the deep learning method to optical flow estimation to extend its forecast time scale and enhance the performance of nowcasting. It is shown that a deep learning model can better capture both multispatial and multitemporal motions of precipitation events compared with traditional optical flow estimation methods. The model comprises two components: 1) a regression process based on multiple optical flow algorithms, which more accurately captures multispatial features compared with a single optical flow algorithm; and 2) a U-Net-based network that trains multitemporal features of precipitation movement. We evaluated the model performance with cases of precipitation in South Korea. In particular, the regression process minimizes errors by combining multiple optical flow algorithms with a gradient descent method and outperforms other models using only a single optical flow algorithm up to a 3-h lead time. Additionally, the U-Net plays a crucial role in capturing nonlinear motion that cannot be captured by a simple advection model through traditional optical flow estimation. Consequently, we suggest that the proposed optical flow estimation method with deep learning could play a significant role in improving the performance of current operational nowcasting models, which are based on traditional optical flow methods. Significance Statement The purpose of this study is to improve the accuracy of short-term rainfall prediction based on optical flow methods that have been employed for operational precipitation nowcasting. By utilizing open-source libraries, such as OpenCV, and commonly applied machine learning techniques, such as multiple linear regression and U-Net networks, we propose an accessible model for enhancing prediction accuracy. We expect that the improvement in prediction accuracy will significantly improve the practical application of operational precipitation nowcasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.