Abstract

The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep features of heavy metal lead (Pb) detection of oilseed rape leaves. Firstly, the standard normalized variable (SNV) algorithm was established as the best preprocessing algorithm, and the SNV-treated fluorescence spectral data was used for further data analysis. Then, WT was used to decompose the SNV-treated fluorescence spectra of oilseed rape leaves to obtain the optimal wavelet decomposition layers using different wavelet basis functions, and SDAE was used for deep feature learning under the optimal wavelet decomposition layer. Finally, the best established support vector machine regression (SVR) model prediction set parameters Rp2, RMSEP and RPD were 0.9388, 0.0199 mg/kg and 3.275 using sym7 as the wavelet basis function. The results of this study verified that the huge potential of fluorescence hyperspectral technology combined with deep learning algorithms to detect heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.