Abstract

In this study, an essential application of remote sensing using deep learning functionality is presented. Gaofen-1 satellite mission, developed by the China National Space Administration (CNSA) for the civilian high-definition Earth observation satellite program, provides near-real-time observations for geographical mapping, environment surveying, and climate change monitoring. Cloud and cloud shadow segmentation are a crucial element to enable automatic near-real-time processing of Gaofen-1 images, and therefore, their performances must be accurately validated. In this paper, a robust multiscale segmentation method based on deep learning is proposed to improve the efficiency and effectiveness of cloud and cloud shadow segmentation from Gaofen-1 images. The proposed method first implements feature map based on the spectral-spatial features from residual convolutional layers and the cloud/cloud shadow footprints extraction based on a novel loss function to generate the final footprints. The experimental results using Gaofen-1 images demonstrate the more reasonable accuracy and efficient computational cost achievement of the proposed method compared to the cloud and cloud shadow segmentation performance of two existing state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.