Abstract

The development of effective and comprehensive methods for mapping and monitoring reservoirs is essential for the utilization of water resources and flood control. Remote sensing has the great advantages of broad spatial coverage and regular revisit to meet the demand of large-scale and long-term tasks of earth observation. Although there already exist some methods for coarse-grained identification of reservoirs at region-level in remote sensing images, it remains a challenge to recognize and localize reservoirs accurately with insufficiency of object details and samples annotated. This study focuses on the fine-grained identification and location of reservoirs with a two-stage CNN framework method, which is comprised of a coarse classification between aquatic and land areas of image patches and a fine detection of reservoirs in aquatic patches with precise geographical coordinates. Moreover, a NIR RCNN detection network is proposed to make use of the multi-spectral characteristics of Sentinel-2 images. To verify the effectiveness of our proposed method, we construct a reservoir and dam dataset of 36 Sentinel-2 images which are sampled in various provinces across China and annotated at the instance level by manual work. The experimental results in the test set show that the two-stage CNN method achieves an average recall of 80.83% nationwide, and the comparison between reservoirs recognized by the proposed model and those provided by the China Institute of Water Resources and Hydropower Research verifies that the model reaches a recall of about 90%. Both the indicator evaluation and visualization of identification results have shown the applicability of the proposed method to reservoir recognition in remote sensing images. Being the first attempt to make a fine-grained identification of reservoirs at the instance level, the two-stage CNN framework, which can automatically identify and localize reservoirs in remote sensing images precisely, shows the prospect to be a useful tool for large-scale and long-term reservoir monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call