Abstract

Automatic modulation classification (AMC) plays an important role in many fields to identify the modulation type of wireless signals. In this paper, we introduce deep learning to signal recognition. Based on architecture analysis of the convolutional neural network (CNN), we used real signal data generated by instruments as dataset, and proposed an improved CNN architecture to achieve compatible recognition accuracy of modulation classification. According to various conditions of signal noise ratio (SNR), we test the proposed CNN architecture with the real sampled signals. Experiments results show that the high-layer network is not necessary for modulation recognition with high SNR signals. The proposed CNN architecture has higher average classification accuracy than RESNET and is more compatible for modulation classification of signals with lower SNR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.