Abstract

Abstract. Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (Reco). However, accurate estimation of ET and Reco still remains challenging at sparsely monitored watersheds, where data and field instrumentation are limited. In this study, we developed a hybrid predictive modeling approach (HPM) that integrates eddy covariance measurements, physically based model simulation results, meteorological forcings, and remote-sensing datasets to estimate ET and Reco in high space–time resolution. HPM relies on a deep learning algorithm and long short-term memory (LSTM) and requires only air temperature, precipitation, radiation, normalized difference vegetation index (NDVI), and soil temperature (when available) as input variables. We tested and validated HPM estimation results in different climate regions and developed four use cases to demonstrate the applicability and variability of HPM at various FLUXNET sites and Rocky Mountain SNOTEL sites in Western North America. To test the limitations and performance of the HPM approach in mountainous watersheds, an expanded use case focused on the East River Watershed, Colorado, USA. The results indicate HPM is capable of identifying complicated interactions among meteorological forcings, ET, and Reco variables, as well as providing reliable estimation of ET and Reco across relevant spatiotemporal scales, even in challenging mountainous systems. The study documents that HPM increases our capability to estimate ET and Reco and enhances process understanding at sparsely monitored watersheds.

Highlights

  • Climate change has a profound influence on global and regional energy, water, and carbon cycling, including evapotranspiration (ET), net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco)

  • 4.1 Use Case 1: ET and RECO time series estimation with an hybrid predictive modeling approach (HPM) approach developed at FLUXNET sites

  • A similar level of differences was observed in Reco within the East River Watershed and across snow telemetry (SNOTEL) stations. These results suggest the insufficient resolution of input meteorological forcing data at the East River sites have large uncertainties, which have a significant influence over HPM ET and HPM Reco estimations

Read more

Summary

Introduction

Climate change has a profound influence on global and regional energy, water, and carbon cycling, including evapotranspiration (ET), net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco). ET is an important link between the water and energy cycles: dynamic changes in ET can affect precipitation, soil moisture, and surface temperature, leading to uncertain feedbacks in the environment (Jung et al, 2010; Seneviratne et al, 2006; Teuling et al, 2013). NEE, GPP, and Reco, which represent the net carbon exchange, total carbon assimilation, and total respiration in a specific ecosystem, respectively, play vital roles in the response of the terrestrial ecosystem to global climate change (Jung et al, 2017; Reichstein et al, 2005; Xu et al, 2004).

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call